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now.
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ABSTRACT

KEYWORDS: Light-fields, Plenoptic function, Self-supervised learning, Vision

Transformer, Tensor Display

The hardware challenges associated with light-field (LF) imaging has made it diffi-

cult for consumers to access its benefits like applications in post-capture focus and

aperture control. Learning-based techniques which solve the ill-posed problem of LF

reconstruction from sparse (1, 2 or 4) views have significantly reduced the need for

complex hardware. LF video reconstruction from sparse views poses a special chal-

lenge as acquiring ground-truth for training these models is hard. Hence, we propose

a self-supervised learning-based algorithm for LF video reconstruction from monocu-

lar videos. We use self-supervised geometric, photometric and temporal consistency

constraints inspired from a recent learning-based technique for LF video reconstruc-

tion from stereo video. Additionally, we propose three key techniques that are relevant

to our monocular video input. We propose an explicit disocclusion handling technique

that encourages the network to use information from adjacent input temporal frames, for

inpainting disoccluded regions in a LF frame. This is crucial for a self-supervised tech-

nique as a single input frame does not contain any information about the disoccluded

regions. We also propose an adaptive low-rank representation that provides a signifi-

cant boost in performance by tailoring the representation to each input scene. Finally,

we propose a novel refinement block that is able to exploit the available LF image data

using supervised learning to further refine the reconstruction quality. Our qualitative

and quantitative analysis demonstrates the significance of each of the proposed build-

ing blocks and also the superior results compared to previous state-of-the-art monocular

LF reconstruction techniques. We further validate our algorithm by reconstructing LF

videos from monocular videos acquired using a commercial GoPro camera. We also

show that our network can be extended to LF synthesis from dual-pixel (DP) images

using minimal modification.
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Chapter 1

INTRODUCTION

Cameras have become cheap and ubiquitous in the modern world, giving consumers a

capability to acquire photos and videos anywhere and anytime. The last decade saw

an accelerated improvement in image sensors and lens quality, leading to a significant

improvement in the picture quality from these tiny cameras. Towards the end of the

decade, the focus shifted towards more and more innovative software, pushing the lim-

its to what can be achieved with these ubiquitous cameras( Delbracio et al. (2021)). This

push resulted in a variety of features: ranging from simple effects like background-blur

to more dramatic ones like augmented reality. Features like bokeh effects and novel

view synthesis became popular as they provided a sense of ‘3D’ to the otherwise flat

pictures. However, these features have currently been limited to images and there’s no

straightforward way of extending them to videos. In the last few years, videos have cer-

tainly become a more powerful means of communication, knowledge-sharing and even

entertainment. LF imaging could provide an intuitive way of bringing these features to

videos. However, there’s no easy way to capture LF videos yet. Computational pho-

tography is poised to solve this, making it easy and accessible to capture LF on small

form-factor devices (Kim et al. (2020)). We instead focus on existing camera hardware

and aim to reconstruct LF videos from any ordinary monocular camera.

Traditionally, LF imaging required use of bulky or complex hardware setups such as

camera arrays (Wilburn et al. (2005)) and micro-lens arrays (Ng et al. (2005)). Hence,

the recent focus has been on reducing the hardware complexity through the use of

learning-based techniques. Typically, these involve the reconstruction of LF from sparse

input views (such as 1, 2 or 4 views) (Kalantari et al. (2016a), Zhang et al. (2015),

Srinivasan et al. (2017), Li and Kalantari (2020)). To solve the challenges in acquiring

LF videos through commercial cameras, several techniques for LF video reconstruction

have also been proposed (Bae et al. (2021), Kalantari et al. (2016b), Wang et al. (2017),
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Fig. 1.1: We propose three novel techniques: a) disocclusion handling, b) adaptive low-rank representation for LF and c) a novel
refinement block, for LF video reconstruction from monocular video. Combining these with the self-supervised cost
functions inspired by (Shedligeri et al. (2021)), we can reconstruct high-fidelity LF videos, even with varying baselines.
As shown in (d) this allows us to control the synthetic defocus blur using the output video.

Shedligeri et al. (2021)). SeLFVi (Shedligeri et al. (2021)) is an interesting recent work

that proposes a novel self-supervised technique for LF video reconstruction from stereo

videos. Being a self-supervised technique it relied on an intermediate low-rank repre-

sentation for LF frames achieving high-quality reconstructions. However, it requires

a stereo video input where both cameras should have identical focal lengths (identical

field-of-view). This can become a limitation considering that stereo cameras are still not

as widespread as monocular cameras. This is especially true for consumer applications,

where mostly monocular cameras are preferred.

Motivated by the availability of large and diverse sets of high-quality monocular videos

we propose a novel, self-supervised learning technique for LF video reconstruction

from monocular input. To start with, we preserve the self-supervised photometric, geo-

metric and temporal consistency constraints adopted in SeLFVi (see Sec. 3.3). Further

we introduce three crucial blocks that are necessary for our case of monocular video in-

put. These are: 1) a novel loss for handling disocclusion, 2) a scene geometry adaptive

intermediate low-rank representation and 3) a novel and supervised refinement block to

further refine the LF video(see Fig. 1.1).

The challenge with just a monocular input is that there’s no information on how to fill

the disoccluded regions/pixels of the predicted LF. We propose a technique to inpaint

the disoccluded regions of the estimated LF frames. The intuition is that, in a video

2



acquired using a moving camera, occluded regions in one frame might be visible in the

neighboring temporal frames. Our disocclusion handling technique (Sec. 3.4) utilizes

this existing information to fill in the disoccluded regions of the LF frame.

Next, we modify the standard TD based intermediate low-rank representation so that

it can adapt to any input scene. While TD model (Wetzstein et al. (2012)) uses fixed

displacement between the layers, we propose a modification where this displacement

can be modified for each input image (Sec. 3.2). In Wetzstein et al. (2012), each of the

layers are shown to represent a depth-plane in the scene. Hence, by estimating the dis-

placement values for each scene, the layers are better able to represent the given LF. As

shown in our experiments, the adaptive low-rank representation provides a significant

boost in the quality of the predicted LF frames. We also show that our network can be

extended to LF synthesis from DP images using minimal modification.

Finally, we explore the popular idea of self-supervised pre-training, followed by super-

vised learning on a small amount of data to boost the performance of a model (Chen

et al. (2020), Caron et al. (2020), Jaiswal et al. (2021)). We design a novel convo-

lutional vision-transformer-based (Dosovitskiy et al. (2020)) refinement block that is

trained via supervised learning on a small amount of LF image data. This helps in fur-

ther refining the output around the depth-edges that are difficult to reconstruct with just

self-supervised learning. The final output is a weighted combination of the refinement

block output and the LF estimated by self-supervised learning (Sec. 3.5). In summary,

we make the following contributions:

• High quality reconstruction of LF videos from monocular video with self-supervised
learning.

• Handling disocclusions in rendering LFs using self-supervised consistency losses
utilizing information from successive video frames.

• A modified TD-based low-rank representation that can adapt to the given input
scene dynamically adjusting the distance between the layers.

• A novel supervised vision-transformer based refinement block to exploit the small
amount of LF image data to further improve reconstruction on video.
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Chapter 2

RELATED WORK

LF synthesis While the concept of LF or integral imaging is quite old (Lippmann

(1908), Adelson and Bergen (1991)), capturing these images has been complicated.

While commercial LF cameras are now available in the market (Ng et al. (2005)), they

suffer from low spatial resolution. Over the last several years, a diverse set of camera

setups and algorithms have aimed at making LF imaging simpler and more accessible.

There have been setups that use coded-aperture systems (Veeraraghavan et al. (2007),

Inagaki et al. (2018), Sakai et al. (2020)), cameras with coded masks near the sensor

(Marwah et al. (2013), Hajisharif et al. (2020)) and even hybrid sensors (Wang et al.

(2017)). Later, with advances in deep-learning, systems using ordinary commercial

cameras such as one or more DSLRs became popular. Techniques that reconstruct LF

frames from focus-defocus pair(Vadathya et al. (2019)) or focal-stack images(Blocker

et al. (2018)) were proposed. Several techniques were also proposed that could recon-

struct LF from sparse set of views on a regular grid. The number of views could be

1-view(Srinivasan et al. (2017), Li and Kalantari (2020), Bae et al. (2021), Ivan et al.

(2019)), 2-views(Zhang et al. (2015), Shedligeri et al. (2021)), 4-views(Kalantari et al.

(2016a), Wang et al. (2018b), Yeung et al. (2018)) and even 9-views(Wu et al. (2017)).

LF synthesis from monocular image As ordinary monocular cameras are ubiqui-

tous, several techniques aim at LF reconstruction from them. As this is an ill-posed

problem, learning-based techniques have been essential in this domain. A popular tech-

nique has been to first predict disparity flow (Srinivasan et al. (2017)) or appearance

flow(Ivan et al. (2019), Zhou et al. (2016)) and then warp the input image accordingly

to reconstruct the LF frame. Recently, Multi-Plane Image (MPI) based representation is

being used for LF prediction (Huang et al. (2018), Zhou et al. (2018), Srinivasan et al.

(2019), Mildenhall et al. (2019), Li and Kalantari (2020)). Li et al. (Li and Kalantari



(2020)) propose a modified MPI model that allowed them to significantly reduce the

representation complexity. With a similar intuition, we propose a modified low-rank

representation based on layered LF displays (Wetzstein et al. (2012)) for predicting the

LF frames.

LF video reconstruction As commercial LF cameras such as Lytro acquire videos

at only 3 frames per second (fps), LF video acquisition at high angular and temporal

resolution has also been challenging. In Wang et al. (2017) a learning-based algorithm

with a hybrid camera system consisting of a general DSLR camera and a light field

camera was proposed. Hajisharif et al. (Hajisharif et al. (2020)) proposed a single

sensor-based algorithm that required a coded mask to be placed in front of the sensor.

As these algorithms require complex and bulky hardware setups, techniques such as Bae

et al. (2021), Shedligeri et al. (2021) are proposed that just require ordinary cameras.

Although our self-supervised algorithm is inspired from Shedligeri et al. (2021), the

closest work to ours is Bae et al. (2021). Bae et al.(Bae et al. (2021)) utilize a large set

of computer-generated data to supervise a neural network for LF video reconstruction

from monocular video. In contrast, our proposed technique does not require hard-to-

acquire LF video data for supervision.

Learning with layered LF representation Previously, layered LF display represen-

tations (Wetzstein et al. (2012)) have been used in conjunction with neural networks.

Maruyama et al. (2019) built an end-to-end pipeline from a coded aperture scene ac-

quisition for displaying the scene on a layered LF display. Similar work in Takahashi

et al. (2018), Kobayashi et al. (2017) aims at capturing a focal stack and then learning

to display the scene onto the LF display. Inspired by Shedligeri et al. (2021), we also

adopt the layered LF display based intermediate low-rank representation F for LF es-

timation. We extend the standard low-rank model to adapt to the individual scene by

predicting the optimal distance between the layers for each input image.
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Dual-Pixel Sensor DP sensors were introduced as a mechanism to provide fast and

accurate autofocus (Abuolaim et al. (2018)). The autofocus system on a DP camera

exploits the defocus disparity induced between the left and right views for a region of

the scene that is out of focus. By evaluating the signed average disparity value within

a region of interest, the autofocus routine can determine the direction and extent by

which the lens has to be moved to minimize disparity, and thereby bring that region into

focus. Recent work has showed that DP data can be used for additional tasks, such as

synthetic bokeh (Wadhwa et al. (2018)), reflection removal (Punnappurath and Brown

(2019)), and depth estimation (Garg et al. (2019a)). As an extension to our work, we

also modify our architecture to synthesis LF from DP images(not videos) as DP images

improve the depth perception of the scene in comparison to monocular images.
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Chapter 3

MONOCULAR LIGHT-FIELD VIDEO ESTIMATION

We propose a self-supervised learning based technique for LF video reconstruction from

a monocular video sequence. For each input frame of the monocular video, we recon-

struct a corresponding LF video frame. As shown in Fig. 3.1, a deep neural network

takes as input, a sequence of 3 input frames and a disparity map {It−1, It, It+1, dt}

and estimates an intermediate low-rank representation of the current LF frame L̂t. As

shown in Fig. 3.2 and further elaborated in Sec. 3.2, we propose a modified interme-

diate low-rank representation adapted from Wetzstein et al. (2012). After obtaining L̂t

from the adaptive TD layer, we introduce the geometric, photometric and the temporal

consistency constraints (Shedligeri et al. (2021)) to train our LF synthesis network (see

Sec. 3.3). Being a self-supervised technique, we do not have any information about the

disoccluded regions in L̂t from just It. Hence, we introduce a disocclusion handling

technique that utilizes information from It−1 and It+1 to fill-in the disoccluded regions

of L̂t(see Sec. 3.4). Finally, to further refine the estimated LF frame, we propose a novel

residual refinement block based on vision-transformers (see Sec. 3.5) which is trained

using supervised learning.

3.1 LIGHT FIELD FRAME PREDICTION

As shown in Fig. 3.1, we stack three successive input frames and the corresponding

disparity map as I ={It−1, It, It+1,dt} and feed it to the LF prediction network V . With

a monocular input, it’s not possible to obtain a disparity map directly. Hence, we first

estimate a relative depth map zt of It using a pre-trained monocular depth estimation

model (Ranftl et al. (2021)). We know that a disparity map is related to the depth map

up to an affine transformation (Garg et al. (2019b)), defined here as dt = azt+ b, where

a and b are two scalars. During training, we randomly sample values of a and b and

convert the relative depth map zt to the disparity map dt. The network V is a long short



term memory (LSTM) based model consisting of an encoder and decoder with skip

connections. The network V predicts an intermediate low-rank representation F for L̂t

based on a modified tensor-display model (Wetzstein et al. (2012)). We describe the

process of obtaining L̂t from the low-rank representation F in Sec. 3.2.

3.2 ADAPTIVE TENSOR-DISPLAY MODEL

In the previous section, we estimated the representation F from the network V , based

on the low-rank model proposed in Wetzstein et al. (2012). In this standard model,

F = [f−N/2, . . . , f0, . . . , fN/2], where fk = [f 1
k , f

2
k , . . . , f

R
k ], f

r
k ∈ [0, 1]h×w×3. Here N

represents the number of layers in the low-rank model and R represents its correspond-

ing rank. Given F , the corresponding 4D LF frame can be computed as

L(x, y, u, v) = TD(F) =
R∑

r=1

N/2∏
n=−N/2

f r
n(x+ nu, y + nv) (3.1)

where x, y and u, v respectively denote the spatial and angular coordinates. Further

analysis into these representations in Wetzstein et al. (2012) showed that each layer

approximately represents a particular depth plane in the scene. However, the standard

model places these layers at a uniform distance from each other representing depth

planes placed uniformly in the scene. In a natural image the objects in the scene could

be distributed non-uniformly throughout the depth. This idea was exploited in Li and

Kalantari (2020), where the standard MPI model was adapted to each input image by

assigning non-uniform disparity values for each MPI layer. This drastically reduced the

number of MPI layers required to represent the scene up to a similar accuracy.

Motivated by this we use a m-VIT network (Bhat et al. (2021)), to predict a sequence

of values, D = {D−N/2, . . . DN/2}, that will be used in adapting the TD layer to each

input (Fig. 3.2). m-VIT predicts one value for each layer in the representation F using

the input I = {It−1, It, It+1, dt}. The values in D are used in the proposed adaptive TD
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the same set I and F as input and outputs the LF frame L̂t. A set of self-supervised cost-functions (3.3, 3.4) are then
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Fig. 3.2: We use an m-VIT block (Bhat et al. (2021)) to predict the displacement between the different layers of the TD based

low-rank representation. Each of the layers in F approximately represent a scene depth plane. Instead of keeping the
layers static/fixed, a scene-specific displacement value will move the layer to a depth plane where it can best represent the
scene.

layer as

L(x, y, u, v) = TD(F ;D) =
R∑

r=1

N/2∏
n=−N/2

f r
n(x+Dnu, y +Dnv) , (3.2)

where Dn represents the scalar value predicted by m-VIT for layer n. After computing

L̂t from our proposed adaptive TD layer, we impose three main self-supervised cost

functions to train the prediction network V .

3.3 LOSS FUNCTIONS

To successfully train the LF prediction network V , we follow Shedligeri et al. (2021)

and define three constraints that enforce the structure of the LF video on the predicted

sequence of frames.

3.3.1 Photometric constraint

The photometric constraint is defined on the premise that the center view of L̂t should

match the current input frame It. Hence, we define the loss function reflecting this as

Lt
photo = ∥L̂t (0)− It∥1, where L̂t (0) represents the central angular view of L̂t.
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3.3.2 Geometric constraint

To compute the cost, we first warp all SAIs of the L̂t to the SAI 0 that corresponds to

It. In essence, we warp L̂t(u) to the SAI 0 to obtain L̂t(u � 0), expressed as,

L̂t(u � 0) = W
(
L̂t (u) ; (u− 0) dt

)
. (3.3)

Here, W denotes the bilinear inverse warping operator (Jaderberg et al. (2015)) that

takes as input a displacement map and remaps the images. The geometric consistency

error between the approximated current frame L̂t(u � 0) and It is then defined as,

Lt
geo =

∑
u

∥L̂t (u � 0)− It∥1 . (3.4)

3.3.3 Temporal consistency constraint

In addition to an LSTM network-based (Shi et al. (2015)) recurrent framework of our

network V , we impose a temporal consistency constraint on the predicted outputs. For

this, we first estimate the optical flow between successive input video frames using a

pre-trained RAFT (Teed and Deng (2020)) network, denoted as O. The optical flow

is then computed as ot = O(It, It+1). To enforce temporal consistency, we utilize the

warped angular views L̂t (u � 0) and again warp them to the video frame at t+1 using

ot. Then, the temporal consistency error is defined as the error between the known next

frame It+1 and these warped frames and is denoted as,

Lt
temp =

∑
u

∥W
(
L̂t (u � 0; ot)

)
− It+1∥1 . (3.5)

Minimizing this error during training explicitly enforces temporal consistency between

the successive predicted LF frames.
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Fig. 3.3: We introduce disocclusion handling to constrain the synthesis network to fill in the disoccluded pixels of the LF with
information from the neighboring frames. The neighboring temporal frames are forward warped to the locations of the
SAIs of estimated LF L̂tvia optical flow. As the disoccluded pixel information could be either in It+1 or It−1 we take
the minimum of the difference between the forward warped image and the LF SAI.

3.4 DISOCCLUSION HANDLING

In a LF, pixels at depth boundary of objects get occluded and disoccluded between dif-

ferent SAIs. Due to the lack of ground truth data we face a major challenge when learn-

ing to fill-in the intensity values at the disoccluded pixels. While the current input frame

It does not carry any information about the disoccluded pixels, the neighboring frames

{It−1, It+1} could potentially have the necessary pixel values. Pixels from neighboring

video frames have been used to inpaint the current frame in several video-inpainting

techniques (Kim et al. (2019), Xu et al. (2019)). Here, we define a loss function that

encourages the network V to fill-in the disoccluded pixels from the neighboring frames

It−1 and It+1.

We define the loss function on only those pixels that are disoccluded in the SAIs of the

LF frame L̂t. We obtain the disoccluded pixels by forward-warping the input frame It

to all the SAIs of LF with the disparity map dt. For each SAI at angular location u,

we define a binary mask Mt which is 1 if forward warping resulted in a hole for that

particular pixel. To fill the dis-occluded pixels, we forward warp It−1to the predicted

SAIs of L̂t using optical flow as shown in Fig. 3.3. The forward warped SAIs are

obtained as:

L̃t�t−1(u) = W
(
It−1;O

(
It−1, L̂t(u)

))
, (3.6)
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Fig. 3.4: A supervised residual refinement block is used to further improve the reconstruction quality of the LFs. The transformer
block attends to the spatio-angular information in the estimated LF and the input frame It to predict the refined output.

L̃t�t+1(u) = W
(
It+1;O

(
It+1, L̂t(u)

))
, (3.7)

where L̃t�t+1(u) and L̃t�t−1(u) represent the forwards warped SAIs from It+1 and It−1

respectively using optical flow. Depending on the camera motion the disoccluded pixels

in L̂tcould be visible either in It−1 or It+1 or both. Taking this into consideration, we

define the cost function as

Lt
occ = min(∥Mt ·

(
L̂t(u)− L̃t�t−1(u)

)
∥1 , ∥Mt ·

(
L̂t(u)− L̃t�t+1(u)

)
∥1) . (3.8)

Lt
occ follows the concept of minimum re-projection loss followed in monocular depth

estimation techniques such as Godard et al. (2019).

3.5 SUPERVISED RESIDUAL REFINEMENT BLOCK

Recently, self-supervised pre-training on very large unlabeled datasets followed by su-

pervised learning on a limited labeled dataset has helped in achieving state-of-the-art

results (Chen et al. (2020), Caron et al. (2020), Jaiswal et al. (2021)). Inspired by

these works, we propose to use the limited dataset of LF images to further refine the

reconstructed LF frames. As this shouldn’t affect the temporal consistency of the pre-

dicted frames, the proposed refinement module follows a residual network architecture

as shown in Fig. 3.4. And this module can be trained as a separate block from the

recurrent module in the synthesis network V .

Vision Transformers(ViT) (Dosovitskiy et al. (2020)) form the backbone of our pro-
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posed refinement module. As shown in Fig. 3.4, we divide the predicted LF frame L̂t

into non-overlapping patches, each of size p × p. For simplicity consider all the U2

top-left patches cropped from each angular view of L̂t. A shallow ResNet-based neu-

ral network extracts features independently from each of the U2 patches. Additionally,

we also extract features from the top-left patch of the input image It. The transformer

module then takes as input the U2+1 features/embeddings as input and outputs U2+1

tokens after applying multi-headed self-attention (MHSA) (Dosovitskiy et al. (2020)).

An identical procedure is repeated on all the non-overlapping patches of L̂t to produce

U2 + 1 tokens each time.

As in Fig. 3.4, we discard the token from the input frame and consider all the P trans-

formed tokens from a particular angular view, say bottom-right. Here, P is the num-

ber of non-overlapping patches cropped from each angular view. These P tokens are

stacked horizontally and vertically following the order of cropped patches, so as to form

a larger feature map. A shallow decoder network then takes these stacked tokens as in-

put and predicts a 4 channel output. The first 3 channels form an RGB image (L̃ref
t (u))

and the fourth channel is the mask Mref ∈ [0, 1]h×w. The final output L̂ref
t is then

defined as,

L̂ref
t (u) = Mref ⊙ L̂t(u) + (1−Mref )⊙ L̃ref

t (u) . (3.9)

Identical decoding step is repeated for each SAI u producing a refined LF frame L̂ref
t .

As we assume access to a LF image dataset, we train the refinement network by impos-

ing L1 loss between L̂ref
t and the corresponding ground-truth Lt as:

Lref =
∑
u

∥L̂ref
t (u)− Lt(u)∥1 . (3.10)

3.6 OVERALL LOSS

We finally add total-variation(TV)-based smoothness constraint(Shedligeri et al. (2021))

on the predicted LF frames and Bin-center density loss (Bhat et al. (2021)) on dispar-

ity values predicted by m-VIT. The Bin-center density loss encourages the predicted

13



disparity planes to be close to the disparity map dt which is provided as input to the

adaptive TD layer. Including all the cost functions, the overall loss to minimize for

training V and the adaptive TD layer becomes,

Lt
self = λ1Lt

photo + λ2Lt
geo + λ3Lt

temp + λ4Lt
occ + λ5Lt

bins + λ6Lt
TV , (3.11)

where the parameters λi control the contribution of each loss term. After the self-

supervised training of the main network is completed, we then freeze these weights

and train the refinement block. The refinement block is trained using a supervised cost

function Lref in Eq. (3.10).

3.7 FURTHER DETAILS OF OUR PROPOSED NETWORK ARCHITECTURE

Light field synthesis network, V The synthesis network V is a LSTM based re-

current neural network consisting of a Efficient-Net encoder (Tan and Le (2019)) and

a convolutional decoder with skip connections as shown in Fig. 3.5. The LSTM layer

follows the Efficient-Net encoder and the cell output from the LSTM layer is fed as

input to the decoder network. The decoder network consists of 4 upsampling blocks. In

the upsampling block, the feature maps are first doubled in size spatially using bilinear

interpolation. The upsampled feature map is then fed to a series of two convolutional

layers of filter size 3× 3, which is then followed by batch normalization. The output of

the final upsampling block is then input to a final convolutional layer which outputs 36

RGB (108) channels. These 108 channels correspond to the N = 3 layers and R = 12

rank of the low-rank LF representation F .

The displacements D = {D1, D2, D3} for the Adaptive TD layer are predicted from

m-VIT(Bhat et al. (2021)) network that takes as input {It−1,It,It+1,dt}. The m-VIT

network used in our work is exactly the same as the one proposed in Bhat et al. (2021).

Except that in our implementation we stack successive frames and disparity map as

input (10 channels) and provide it as input to m-VIT. The output of this network is a

sequence of values D = {D1, D2, D3} which is used to predict the LF frame.
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Fig. 3.5: We show the detailed network architecture of the LF synthesis network V that predicts the low-rank representation F .
For estimation of the low-rank LF representation, we use a encoder-decoder based network with ConvLSTM module used
for learning temporal information. The encoder block follows the Efficient-Net(Tan and Le (2019)) architecture and the
decoder consists of bilinear interpolation operation followed by convolution and batch-normalization operation.

Supervised residual refinement module Vision Transformers(ViT) (Dosovitskiy et al.

(2020)) form the backbone of our proposed refinement module. We divide the predicted

LF frame L̂t into non-overlapping patches, each of size p × p (= 32 × 32). A shallow

ResNet-based encoder (see Fig. 3.6) extracts features independently from each of the

U2(= 49) patches. The encoder contains 12 bottleneck blocks (He et al. (2015)) with

max-pooling operation carried out at the first of every three blocks as shown in Fig. 3.6.

The obtained feature embeddings are input to two transformer layers which applied

multi-headed self-attention (MHSA) to these tokens. Here, P (= 6) is the number of

non-overlapping patches cropped from each angular view. These P tokens are stacked

horizontally and vertically following the order of cropped patches, so as to form a larger

feature map. A shallow decoder network then takes these stacked tokens as input and

predicts a 4 channel output. The shallow network consists of 4 upsample blocks where

each block has the exact same configuration followed in LF synthesis network, V .

3.8 IMPLEMENTATION DETAILS

As shown in Fig. 3.1, our proposed pipeline has three separate deep neural networks:

(a) LF synthesis network, (b) adaptive TD layer (Fig. 3.2) and (c) refinement network

(Fig. 3.4). The synthesis network V is a LSTM based recurrent neural network con-

sisting of a Efficient-Net encoder (Tan and Le (2019)) and a convolutional decoder with

skip connections. In the adaptive TD layer, we set the low-rank representation F to
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Fig. 3.6: We show the detailed architecture of the supervised Refinement module in our proposed algorithm (see Fig. 3.4 of main).
It takes as input the spatial patches cropped from each LF SAI and produces a feature map for independently for each
patch. The ‘Bottleneck block’ used here is identical to the ResNet-based bottleneck block proposed in He et al. (2015).
The output features from encoder are then flattened and passed through a MLP layer to get the feature embeddings. The
transformer layer performs multi-headed self-attention (MHSA) on the embeddings and outputs tokens which are then
reassembled spatially to form larger feature maps (see Sec. 3.5 of main). These feature maps are input to the decoder
block identical to the decoder block in V . The refined LF and mask are obtained as outputs from the decoder block.

have N = 3 layers and the rank R = 12 following Shedligeri et al. (2021). The dis-

placements D = {D1, D2, D3} are predicted from m-VIT(Bhat et al. (2021)) network

that takes as input {It−1,It,It+1,dt}. Finally, the refinement network has a backbone of

the convolutional vision transformer which is supervised using a limited amount of LF

image data. Further details of the neural networks can be found in the supplementary

material.

For training our proposed synthesis network, we use the GOPRO monocular video

dataset(Nah et al. (2017)). The GOPRO dataset contains monocular videos of 33

different scenes each containing 525 to 1650 monocular frames of spatial resolution

720 × 1280. We split the dataset into a set of 25 videos for training and 8 videos for

validation. The monocular video frames are resized into frames of size 352 × 528 to

maintain the spatial resolution of Lytro Illum light field camera. While training we ob-

tain a monocular video of 7 frames and randomly crop a patch of size 176 × 264. The

relative depth map input to the network is obtained from Ranftl et al. (2021) and then

modified for various baseline factors to enable the synthesis network to generate LF

outputs of various baseline. We randomly choose a value for a ∈ {0.8, 1.6, 2.4, 3.2}

and b ∈ [0.2, 0.4] to obtain disparity dt = azt + b as explained in Sec. 3.1. The net-

work is trained in Pytorch(Paszke et al. (2019)) using AdamW (Loshchilov and Hutter

(2019)) optimizer for 25 epochs, with an initial learning rate of 0.0001 and weight de-
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cay of 0.001. The learning rate is decreased to half the initial value when the validation

loss plateaus for more more than 4 epochs. We empirically choose the hyperparameters

as λ1 = 1.0, λ2 = 1.0, λ3 = 0.5, λ4 = 0.2, λ5 = 2 and λ6 = 0.1 in Eq. (3.11).

For training our residual refinement block, we freeze the weights of the synthesis net-

work and train only the refinement block using supervised loss function in Eq. (3.10).

We fix the value of a as 1.2 and b as 0.3 to estimate dt which is provided as input to the

synthesis network. For the supervised training, we use 1000 LF images from TAMULF

(Li and Kalantari (2020)) dataset. The network is trained using AdamW optimizer for

15 epochs, with an initial learning rate of 0.001 and weight decay of 0.001. The learn-

ing rate is decreased to half the initial value when the validation loss plateaus for more

more than 4 epochs.
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Chapter 4

EXPERIMENTAL RESULTS

To validate our proposed algorithm, we make several qualitative and quantitative com-

parisons with diverse LF datasets. For quantitative comparison, we mainly consider four

different datasets: Hybrid (Wang et al. (2017)), ViewSynth (Kalantari et al. (2016a)),

TAMULF (Li and Kalantari (2020)) and Stanford (Dansereau et al. (2019)) containing

30, 25, 84 and 113 light field video sequences, respectively. From the Hybrid dataset

we consider the central 7×7 views as the ground-truth light field videos, and the center-

view of each LF forms the input monocular video. The rest three datasets are LF image

datasets, and we simulate LF videos with 8 frames from each LF following the proce-

dure described in Shedligeri et al. (2021), Lumentut et al. (2019). The center-view of

these 7× 7 view LF videos form the monocular video sequence that is given as input to

our algorithm. During inference, we first obtain the depth estimate zt from DPT(Ranftl

et al. (2021)) and convert it to a disparity map dt. Three consecutive temporal frames

and disparity map are stacked and input to the complete model represented in Fig. 3.1

to obtain the LF frame output.

4.1 LIGHT FIELD VIDEO RECONSTRUCTION

We quantitatively and qualitatively compare the results of our proposed algorithm with

previously proposed monocular LF estimation techniques. For quantitative comparison,

we use two metrics: peak signal-to-noise ratio (PSNR) (higher is better) and structural

similarity index measure (SSIM) (higher is better). As shown in Tab. 4.1, we compare

the performance of our proposed algorithm with Niklaus et al. (Niklaus et al. (2019)),

Srinivasan et al. (Srinivasan et al. (2017)) and Li et al. (Li and Kalantari (2020)).

Li et al. (Li and Kalantari (2020)) takes a single frame and a relative depth estimate from

Wang et al. (2018a) as input. To obtain the complete LF video, we have to reconstruct

each frame of the video individually. In Tab. 4.1, Li et al. + Ranftl et al. represents



Algorithm
Hybrid ViewSynth TAMULF Stanford Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Niklaus 23.87 0.873 23.19 0.903 18.12 0.811 23.19 0.892 22.10 0.870
Srinivasan 28.12 0.893 28.56 0.931 22.63 0.857 29.24 0.924 27.14 0.901
Li 31.62 0.950 29.39 0.945 25.63 0.903 30.44 0.956 29.27 0.938
Li+Ranftl 31.69 0.950 29.90 0.953 25.83 0.906 31.21 0.962 29.66 0.943
Proposed 32.66 0.952 30.97 0.956 27.24 0.922 34.98 0.974 31.47 0.951

Table 4.1: We quantitatively compare our proposed technique with state-of-the-art algorithms on various datasets. Our algorithm
consistently provides high-fidelity reconstructions. Blue and green represent the top-two performing algorithm in each
column.

a modified Li and Kalantari (2020), where we input a depth estimate from DPT(Ranftl

et al. (2021)) instead of the original DeepLens(Wang et al. (2018a)) model. This is done

to ensure a fair comparison with our technique as we also use DPT, which is a state-of-

the-art monocular depth estimation technique based on vision transformers. However,

Li and Kalantari (2020) is not trained for inputs from DPT(Ranftl et al. (2021)). Hence,

we finetune Li and Kalantari (2020) on the TAMULF dataset with depth maps from

DPT(Ranftl et al. (2021)). Srinivasan et al. (Srinivasan et al. (2017)) is another single

image LF estimation model. While the original network is trained on a dataset of flower

images (proposed in the same work), we finetune it on a larger and diverse TAMULF

dataset from Li and Kalantari (2020). Finally, we also compare our algorithm with

Niklaus et al. (Niklaus et al. (2019)) that takes a single frame as input. We used

the default implementation provided by the authors for comparison, which is already

trained on a diverse dataset.

Tab. 4.1 details the quantitative comparisons of various algorithms against all 4 datasets:

Hybrid, ViewSynth, TAMULF and Stanford. Our proposed reconstruction outperforms

previous state-of-the-art techniques. We can also see clear distinction when we compare

the images qualitatively in Fig. 4.1, especially when the EPI for the LF views are taken

into account. We also validate our algorithm on monocular videos acquired from a

commercial GoPro camera. While we show some results from GoPro dataset in Fig. 4.2,

please refer to the supplementary material for more qualitative results.
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Ground Truth Ours Li et al. Niklaus et al. Srinivasan et al.

t0
t1
t2

t0
t1
t2

t0
t1
t2

Fig. 4.1: We qualitatively compare our reconstruction with ground truth and other state-of-the-art techniques. We show the top-left
view of t0 and EPI images from three consecutive LF frames (t0, t1, t2). As can be clearly seen from the EPI images,
our technique consistently provides accurate reconstructions.

Algorithm
Hybrid ViewSynth TAMULF Stanford Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
V1 30.76 0.945 29.07 0.947 25.74 0.918 31.70 0.963 29.32 0.943
V2 31.78 0.949 29.71 0.948 26.51 0.919 32.99 0.965 30.25 0.945
V3 32.26 0.950 30.69 0.954 26.96 0.919 34.45 0.973 31.09 0.949
Proposed 32.66 0.952 30.97 0.956 27.24 0.922 34.98 0.974 31.47 0.951

Table 4.2: We consider a baseline model ‘Base[V1]’ that is trained only with the self-supervised constraints as proposed in
SeLFVi(Shedligeri et al. (2021)). We then successively enhance the ‘Base[V1]’ model with disocclusion handling,
adaptive TD layer and the refinement block and compare the performance boost in each case. More details on V1, V2,
V3 are discussed in Sec. 4.2.

4.2 ABLATION STUDY

Our proposed technique contains three key building blocks that enable us to work with

monocular videos. Here, we evaluate the contribution of each of the three building

blocks to the reconstruction quality. As shown in Tab. 4.2 we evaluate the effect of each

block by successively adding the proposed blocks to the baseline model and quantita-

tively comparing the reconstructed LF videos. The baseline model can also be thought

of as an extension of SeLFVi(Shedligeri et al. (2021)) to the case of monocular videos.

Here, we utilize only the geometric, photometric and temporal consistency constraints

proposed in SeLFVi. The LF synthesis network architecture V remains identical in all
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Input image Top-left SAIBottom-right SAI Input image Top-left SAIBottom-right SAIInput image Top-left SAIBottom-right SAI

Fig. 4.2: The model trained without disocclusion handling leads to a halo-like artifact around depth-edges in the SAIs of the frames.
With the proposed disocclusion handling technique, the network learns to accurately fill-in the disoccluded pixels.

the models.

Disocclusion handling (Base[V1] vs Base+occ[V2]): Enforcing the disocclusion han-

dling constraint helps the synthesis network to learn to fill in the disoccluded pixels in

the estimated LF frames as shown in Fig. 4.2. Quantitatively, we also observe a boost

of 0.9dB PSNR in comparison to the baseline model.

Adaptive TD layer (Base+occ[V2] vs Base+occ+adpt[V3]): Our modified adaptive

TD layer can accurately represent the depth planes in the LF as can be seen from the

EPI images in Fig. 4.3. Quantitatively, we get a significant performance boost of about

0.7dB PSNR.

Supervised refinement block (Base+occ+adpt[V3] vs Proposed): Finally, we eval-

uate the effect of the novel refinement block that is trained with supervised loss on

ground-truth LF frames. We observe an expected improvement in the reconstruction

quality, showing a boost in PSNR of nearly 0.4dB. We also make qualitative compar-

ison in Fig. 4.4, where we see that the refinement block provides more accurate SAIs

around depth edges that are difficult to reconstruct with just self-supervised learning.

4.3 TEMPORAL CONSISTENCY OF SYNTHESIZED LF VIDEO SEQUENCE

Our proposed algorithm aims to reconstruct LF video sequences where temporal con-

sistency is a crucial factor. We evaluate and quantitatively compare the temporal con-

sistency of the videos predicted from our proposed algorithm. For evaluating temporal

consistency between successive predicted LF frames, we first predict optical flow via
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Ground Truth Adaptive TD model Standard TD model

t0
t1
t2

t0
t1
t2

Ground Truth Adaptive TD model Standard TD model

Fig. 4.3: As seen in the EPI images, the standard TD model is unable to represent the depth for the scene accurately compared to
the proposed adaptive TD model. By separately determining the depth planes for each scene, adaptive TD model gives a
more accurate reconstruction.

Teed and Deng (2020) between all SAIs of successive ground-truth LF frames, i.e., Lt,

Lt−1. The current estimated LF is then warped to the previous LF frame using the esti-

mated ground-truth optical flow. We then compute the mean squared error between the

previous estimated LF and the current LF warped to the previous LF. The warping error

is used as a measure of temporal stability between successive predicted LF frames. We

calculate the temporal stability function (lower is better) as

Etemp(L̂t;Lt,Lt−1) =
∑
u

∥W
(
L̂t (u) ;O(Lt (u) ,Lt−1 (u))

)
− Lt−1∥2 (4.1)

To estimate the temporal stability of the network for a video, the Etemp function is

then averaged over the entire video. In table Tab. 4.3, we compare two of our models,

‘Base+occ+adpt’ (without refinement block) and ‘Proposed’ (with refinement block),

with previous learning-based techniques. We observe that our proposed algorithm
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Fig. 4.4: As seen from the error map (with respect to ground-truth view), the refinement block improves the depth-edge reconstruc-
tion in SAIs. The refinement block utilizes the spatial information in other SAIs through angular attention and optimizes
the positioning of depth-edges correcting the baseline discrepancy between synthesized and ground truth LF.

Algorithm Hybrid ViewSynth TAMULF Stanford Average
Niklaus 0.357 0.070 0.219 0.065 0.177
Srinivasan 0.195 0.020 0.070 0.014 0.075
Li 0.108 0.019 0.034 0.009 0.043
Li+Ranftl 0.108 0.016 0.033 0.008 0.042
Base+occ+adpt 0.103 0.017 0.028 0.006 0.038
Proposed 0.102 0.016 0.027 0.006 0.038

Table 4.3: We quantitatively compare the temporal consistency of the predicted LF videos through checking the consistency with
the optical flow. Our proposed algorithm performs significantly better than previous state-of-the-art techniques for
LF estimation. Although the ‘Proposed’ model is trained on images without the temporal consitency constraint, its
performance does not degrade compared to ‘Base+occ+adpt’ model which is trained on monocular videos with explicit
temporal consistency loss. Blue and green represent the top-two performing algorithm in each column.

performs significantly better than previous state-of-the-art techniques for LF estima-

tion. Although the ‘Proposed’ model is trained on images without the temporal consis-

tency constraint, its performance does not degrade compared to ‘Base+occ+adpt’ model

which is trained on monocular videos with explicit temporal consistency loss.

4.4 VARIABLE BASELINE LF PREDICTION

Commercial LF cameras such as Lytro Illum capture LF images with fixed baseline.

Hence, supervised techniques using this data are also limited and can produce LF im-

ages with a fixed baseline. However, our proposed network reconstructs LF frames

based on the input disparity map. By scaling the disparity map by a constant factor, we

can scale the disparity values input to the network, leading to LF prediction with vari-

able baselines. In Fig. 4.5 we demonstrate this with 4 different scale factor for disparity

maps, 1×, 1.5×, 2×, 2.5×. Note that our algorithm allows us to generate SAIs with

23



Fr
am

e

1.5x
2x
2.5x

Fig. 4.5: With our proposed self-supervised technique, LF frames with variable baselines can be predicted by just scaling the input
disparity map. We demonstrate this on 4 different scales {1, 1.5, 2, 2.5}×. Notice the increasing slope in the EPI images
from 1× to 2.5×.

higher baseline than that of the ground truth frames from Lytro.

4.5 IDENTIFIED DEPTH PLANES FOR ADAPTIVE TD MODEL

We propose an adaptive tensor-display based low rank representation for estimating

LF from the given input frames. Here, we showcase how the distance values D =

{D1, D2, D3} adapt to the varying input depth maps, thereby providing superior recon-

struction results than that of the standard tensor-display based low-rank representation.

In Fig. 4.6, we show various LF images predicted by different scaled versions of the

disparity map. Specifically, we scale the input disparity map by the factors 1 and 2 and

predict the corresponding LF. We observe that the predicted depth planes adapt to the

input disparity maps providing superior reconstruction results.

4.6 APPLICATION TO VIDEO REFOCUSING

LF have been popular because they provide a very intuitive way of doing post-capture

focus control. The amount of defocus that can be achieved depends on the baseline of

the LF. As demonstrated in Sec. 4.4, our technique is not limited to a single baseline.

Unlike previous LF prediction techniques, a single model can output LF frames with

multiple baselines. And this can be controlled by simply increasing/decreasing the scale

factor used to convert a relative depth map to disparity map. As shown in Fig. 4.7, this

can be used to control the level of blur in the defocused region. In a typical LF camera,

post-capture aperture control can be used to only reduce the blur size from a maximum
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EPI for 1x baseline

EPI for 2x baseline
EPI for 1x baseline

EPI for 2x baseline

EPI for 1x baseline

EPI for 2x baseline
EPI for 1x baseline

EPI for 2x baseline

Fig. 4.6: We show four different samples with EPIs for LF predicted by 1× and 2× scaled disparity inputs. Besides each figure
we also show the distribution of disparity values in the 1× and 2× scaled disparity maps (shown as blue curve). In
these graphs we also represent the disparity planes in the standard and adaptive TD models with green and orange bars
respectively. We observe that the green bars remain constant (at −1, 0,+1) even when the disparity gets scaled. While
the predicted orange bars adapt to the input scaled disparity maps thereby providing a more accurate representation of the
LF. We also notice that the 3 orange bars are not necessarily uniformly distant from each other. Refer to supplementary
video file for video results.

Near Focus Near FocusFar Focus Far Focus

Small baseline LF Large baseline LF
Near Focus Near FocusFar Focus Far Focus

Small baseline LF Large baseline LF
Near Focus Near FocusFar Focus Far Focus

Small baseline LF Large baseline LF

Fig. 4.7: As our model can output LFs with varying baselines, we can demonstrate refocusing effects with varying blur sizes. As
can be seen, the blur size in a large baseline LF is bigger than the one in a small baseline LF.

position. Here, by predicting a LF with a larger baseline, we can also increase the

defocus blur.
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Chapter 5

EXTENDING TO LF IMAGE SYNTHESIS FROM

DUAL-PIXEL IMAGE PAIR

In Sec. 3.1, we propose a self-supervised learning based technique for LF video re-

construction from a monocular video sequence. In this section we aim to extend the

proposed method for DP images. Here we restrict our method to synthesis LF images

from DP images due to the difficulty in capturing videos and the availability of DP

image datasetGarg et al. (2019b). To extract LF images from DP inputs, we stack the

input image and the corresponding DP pair as I ={It, dpt} and feed it to the LF pre-

diction network V . In this case the DP image-pair is given as input to the network as

we expect the network to learn the relative depth map zt from the DP image pair. The

rest of the model is same as the one proposed in Sec. 3.1, where the network V is a

LSTM based model consisting of an encoder and decoder with skip connections. The

network V predicts an intermediate low-rank representation F for L̂t based on a modi-

fied tensor-display model. The supervised refinement block proposed in Sec. 3.5 is not

applied for DP inputs as the LF image datasets do not contain DP inputs for predicting

the LF views using synthesis netowrk V .

To successfully train the LF prediction network V , we enforce the photometric and

geometric consistency constrains as described in Sec. 3.3 for the predicted LF frames

L̂t. For enforcing geometric consistency, we estimate the relative depth map zt of It

using a pre-trained monocular depth estimation model, DPT(Ranftl et al. (2021)). As

mentioned in Sec. 3.1, we define the disparity map in relation to the relative depth maps

as dt = azt + b, where a and b are two scalars. During training, we fix the values of a

and b to 1.2 and 0.3 for estimating the disparity map dt following the same procedure as

detailed in Sec. 3.1. Finally, the overall loss to minimize for training V and the adaptive

TD layer becomes,

Lt
self = λ1Lt

photo + λ2Lt
geo + λ3Lt

bins + λ4Lt
TV , (5.1)
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Fig. 5.1: We use an m-VIT block(Bhat et al. (2021)) to predict the displacement between the different layers of the TD based
low-rank representation. Each of the layers in F approximately represent a scene depth plane. Instead of using relative
depth as in monocular case, we provide DP pair as input to the network to learn appropriate depth planes of the scene.

RGB Image Dual-Pixel pair RGB Image Dual-Pixel pair

EPI EPI

Fig. 5.2: We show qualitative results of our reconstruction from RGB and Dual-Pixel image pair. We show the input RGB image,
dual-pixel pair and EPI images from reconstructed LF frames.

where the parameters λi control the contribution of each loss term.

For training and evaluation our proposed network, we use Dual-Pixel image dataset

from Garg et al. (2019b) obtained using Google Pixel 3 and Google Pixel 4 smart-

phones. The training set of the dataset contains 2506 Dual-pixel image pairs of spatial

resolution 1080 × 720. The test set contains 684 Dual-pixel image pairs of the same

spatial resolution. While training we sample random crop of size 200× 300 from each

Dual-Pixel image sample. The network is trained in Pytorch(Paszke et al. (2019)) using

AdamW(Loshchilov and Hutter (2019)) optimizer for 20 epochs, with an initial learn-

ing rate of 0.0001 and weight decay of 0.001. The learning rate is decreased to half

the initial value when the validation loss plateaus for more more than 4 epochs. We

empirically choose the hyperparameters as λ1 = 1.0, λ2 = 1.0, λ3 = 2 and λ4 = 0.1

in Eq. (5.1). The qualitative results on the test set of our proposed model is shown in

Fig. 5.2.
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Chapter 6

DISCUSSION

Our proposed algorithm is largely a self-supervised technique except for the refinement

block that is supervised using ground-truth LF image data. The refinement block uses

a transformer module for angular attention. To the best of our knowledge this is also

the first attempt to employ vision transformers to LF data. Note that our proposed

algorithm outperforms previous state-of-the-art techniques even without the supervised

refinement module. Another point to note is that, during inference, we do not have any

information about the true baseline of the LF. We only have access to a relative depth

map obtained from a single input image. Hence, it becomes difficult to accurately

compare with the ground-truth. To solve this, we choose a scale and shift factor ({a, b})

such that the mean error between the computed disparity maps (from relative depth

maps) and the true disparity maps (for a given dataset such as TAMULF) is minimum.

Outside of comparison with ground truth, the true disparity map is not necessary and

we can generate LF of multiple baselines as needed (Fig. 4.5).



Chapter 7

CONCLUSION

We propose an algorithm for LF video reconstruction from just a monocular video

input. Our baseline model utilizes the intermediate low-rank representation for LF

and the self-supervised geometric, photometric and temporal constraints inspired from

Shedligeri et al. (2021). However, necessary key modifications were proposed in this

work that enabled the final model to reconstruct high-fidelity LF videos from monoc-

ular input. We propose a disoclussion handling technique that is required to fill-in

disoccluded regions in the estimated LF. We also propose a modified low-rank repre-

sentation that can adapt to each input scene based on the layer displacements predicted

by the network. Finally, we introduce a novel supervised, transformer-based refinement

block that can further refine the predicted LF quality. While showing superior perfor-

mance with respect to the previous state-of-the-art techniques, our model also enables

prediction of LF frames with varying baselines. We also shown that our proposed syn-

thesis network V can be extended to DP image inputs with minimal modification in

the network architecture to synthesis LF frames. Overall, our proposed algorithm fa-

cilitates a monocular and dual-pixel camera for applications like refocusing and novel

view synthesis.
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